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LITERATURE REVIEW

The issue of reliability in transit networks has been modeled for
some time. Some of the earliest work was done by Osuna and
Newell (1) as well as Wilson et al. (2). With the introduction of the
AVL technology, the opportunity to capture vast quantities of reli-
ability data arose (3). Maximizing the benefit of this data collection
is a major effort for many transit agencies.

The work presented here draws heavily from the formulation pre-
sented by Furth and Muller (4). Those investigators quantified the
expected and the excess waiting times as a stochastic function of pos-
sible headways. They assumed that passengers choose lines indepen-
dently of headways and that passenger arrivals were not dependent
on headways (i.e., uniform arrivals). They quantified the waiting
times on the basis of extreme cases of reliability, for example, the
95th percentile wait time. They suggest, and the authors of the pres-
ent report concur, that the mean waiting time is a poor indicator of
waiting time penalties in an unreliable network.

A similar approach is taken here, but the concentration is on
arrival times at the traveler’s destination and the likelihood that an
arrival will satisfy the traveler’s trip objectives. Furthermore, the
analysis is extended to include quantification of the generalized
cost by using a linear weighting proposed by Kittelson and Associ-
ates et al. (5) and used in most travel forecasting models. In the gen-
eralized cost model used in the present study, the impacts of early
arrivals, late arrivals, and departure time are explicitly treated and
shifted as required by unreliability. For the impacts of late and early
arrivals, the model is based on the work of Small (6), as used by
Bates et al. (7 ).

METHODOLOGY

The quality of service experienced at a given station is defined first.
The regional municipality of Waterloo, Ontario, Canada, operates the
iXpress service, which is a limited-stop, express service that travels
between Waterloo, Kitchener, and Cambridge. The alignment, shown
in Figure 1, is approximately 33 km in length and consists of 13 stops.
Along the route there are four downtowns (Cambridge has two
downtowns), two universities, office complexes, major hospitals,
and regional shopping centers. iXpress operates throughout the day
with 15-min headways.

Each of the iXpress vehicles is equipped with AVL technology.
Real-time arrival information was collected for every stop during
the morning and the afternoon peak periods for a week. In total,
approximately 95 observations were gathered at each station. From
these, service reliability was defined as the difference between the
actual arrival time (AAT) and the scheduled arrival time (SAT). For
each station, histograms of service reliability, shown in Figure 2, were
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Transportation modeling frameworks assume that travelers are eco-
nomically rational; that is, they choose the lowest-cost alternative to
complete a desired trip. The reliability of travel time is of critical impor-
tance to travelers. The ability to quantify reliability allows planners to
estimate more accurately how system performance influences local
travel behavior and to evaluate more appropriately potential invest-
ments in the transportation system infrastructure. This paper presents
a methodology that makes use of automatic vehicle location data from
the regional municipality of Waterloo, Ontario, Canada, to estimate the
reliability of transit service. On the basis of these data, the impacts of
unreliable service on generalized transit user costs are quantified by use
of a simulation model of bus arrivals and passengers’ desired arrival
times. It is shown that the increasing reliability of arrivals at a station
can decrease transit users’ generalized costs significantly and by as
much as 15% in a reasonably reliable network. It is further posited that
the inclusion of uncertainty in the calculation of generalized costs may
provide better estimates of mode splits in travel forecasting models. A
description of future applications of the model concludes the paper.

From a user’s perspective, reliability in the transit network involves
departing from the origin station on time, having reasonable limits
on in-vehicle time, and most importantly, arriving at the destina-
tion station within a time frame that allows the traveler to reach his
or her final destination without being late. The ability to quantify
the degree of unreliability of a service allows transit planners to bet-
ter estimate mode splits by the use of travel forecasting models.
Furthermore, quantitative assessments of reliability provide esti-
mates of tangible user benefits (through travel savings) that can
be compared with the costs of investment in the infrastructure to
upgrade reliability, such as queue jumpers, transit signal priority,
or other means.

This paper presents a methodology that makes use of automatic
vehicle location (AVL) data to estimate transit reliability at all stops
along an express bus line service. These data were then used with
various assumptions of passenger behavior to estimate the impacts
of unreliable service on generalized transit user costs through a sim-
ulation model. The results obtained with the model suggest that con-
temporary planning techniques may underestimate the generalized
cost of transit on unreliable networks. An estimate of user benefits
as a result of improved reliability in the network is also provided.
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FIGURE 1 iXpress route serving Waterloo, Kitchener, and Cambridge.
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FIGURE 2 Observed frequency of service reliability, Ainslee terminal to Cambridge Centre [distribution: log
normal; chi-square test � 4.92718; degrees of freedom � 4 (adjusted); p � .29485].
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generated, and on the basis of those histograms, goodness-of-fit tests
were completed to suggest an appropriate distribution. In each case,
the probability density function (PDF) is a log-normal distribution
that meets a priori expectations: there are a few early arrivals, many
arrivals at about the scheduled time, and a longer range of arrivals at
times much later than the scheduled time. The log-normal distribu-
tion requires that all observations be greater than zero. To accommo-
date early arrivals, a constant approximately equal to the minimum
observation was added to the test statistic.

For the 13 stations, a wide range of standard deviations (a mea-
sure of variance in service reliability) was observed. The range of
standard deviations was from 0.12 to 1.06 min, and the average
deviation was 0.44 min. In all, iXpress is a relatively reliable sys-
tem. From these empirical data, three station types were defined:
high reliability, medium reliability, and low reliability. Each type
has a similar mean but various deviations.

Three groups of travelers with various risk tolerances that may
represent the travelers’ personalities or trip purpose were next defined.
One subset of travelers is very risk averse (RA) and chooses a 
transit departure only if the likelihood of arriving late with that
departure was less than 10%. This group may represent those com-
muters for whom work start times are fixed and highly inflexible.
A second group of travelers is moderately risk averse (MRA) and
selects a transit departure if the risk of arriving at the destina-
tion late is less than 30%. Finally, a risk-neutral (RN) group was
defined. These individuals select a transit departure if the proba-
bility of a late arrival is less than 50%. The RN group may be con-
sidered recreational travelers for whom arrival times have some
flexibility.

With these definitions in place, travel behavior rules were created
for each of the travelers to each of the stations. Assume that the nec-
essary arrival time (NAT), which is the latest time that a traveler can
arrive without being late, is a random variable that is uniformly dis-
tributed between two subsequent bus arrivals. Δ* can be defined as
the difference of the bus’s SAT and AAT. On the basis of the cumu-
lative distribution function of the service reliability statistic and the
traveler, there exists some Δ* for which the probability of an arrival
before SAT + Δ* is equal to the traveler’s risk threshold. If the trav-
eler’s NAT is later than the station’s Δ*, then that traveler will choose
the first transit arrival before his or her NAT. The relationship is
shown graphically in Figure 3. This relationship can be expressed
mathematically as follows:

Travelers choose A1 if

NAT ≥ Δ* ( )1

where Δ* is given by Pr(AAT − SAT ≥ Δ*) ≤ risk tolerance (where
Pr is probability), and A1 is the bus arrival with the first SAT before
the NAT.

Suppose a traveler must reach his or her destination stop at 14:00 h.
The closest scheduled bus arrival time is 13:55 h. If arrivals at that
stop are sufficiently reliable that the bus scheduled to arrive at 13:55 h
actually arrives before 14:00 h 90% of the time, then even the most
risk-averse traveler in the model will choose that departure time. If,
alternatively, the bus scheduled to arrive at 13:55 h actually arrives
before 14:00 h only 40% of the time, then none of the travelers has
a sufficient risk tolerance to choose the bus scheduled to arrive at
13:55 h.

Because the PDF of arrival times at each of the stations is avail-
able, the cumulative distribution function can be computed, and
from that the number of minutes after the SAT that satisfies the
risk aversion threshold for each of the travelers in the model can
be determined. This is shown in Table 1.

One can interpret Table 1 as follows. A RA traveler traveling
to a station with known, low-reliability service will choose the
scheduled bus arrival immediately before his or her appointment
only if the appointment occurs later than 7 min after the SAT. This
is because the data on actual arrivals at this station suggest that there
is a chance of only 10%, the RA traveler’s threshold, of an arrival
later than 7 min after the SAT.

Because it was assumed that the NATs are uniformly distributed,
the probability that NAT will occur after Δ* can also be estimated.
Mathematically, this is given by

where h is the line’s headway, which in this case is 15 min.
An appropriate question to be asked here is what happens to

those trips for which the NAT falls too near the SAT to allow the
traveler to choose that arrival. It was assumed that the traveler then
elects to travel on an earlier bus. The traveler then arrives at 
the destination one headway earlier than the original scheduled
arrival time plus any unreliability that the traveler may experience
on this bus. Mathematically, the SAT on the previous bus, SAT−1,
becomes

The impacts of this unreliability are explored in the next section.

SAT headway unreliability0 − +
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FIGURE 3 Graphical representation of bus and passenger arrival
times.

TABLE 1 Station Arrival Distributions and Critical Arrival Times

Δ* for Each Station and 
Traveler Type

Moderately
Station Type µ σ RA RA RN

High reliability 1.245 0.2621 1.9 1.0 0.5

Medium 1.228 0.4416 4.0 2.3 1.4
reliability

Low reliability 1.062 0.7792 7.0 3.4 1.9



Perceptions of Travel Time

Typically, when travel time is measured, modelers use a generalized
cost formulation that quantifies a linearly weighted sum of travel
time components. A common example is as follows:

where

GCT = generalized cost of a trip by transit (dollars),
AT = access time to the line (min),
WT = waiting time, modeled as half the headway for short

headways (min),
IVT = in-vehicle time (min),

VOT = value of time (dollars per minute),
fare = transit fare (dollars), and

αi = relative importance of the component.

Although this formulation adequately measures the actual time
and out-of-pocket costs from the time of departure from an origin
(other than the transit stop) to the time of departure at the transit
stop, it fails to account for two additional costs borne by transit trav-
elers. First, because transit has discrete departure and arrival times,
there is an inherent penalty for early arrival that is not typically
counted. Second, in light of reliability, travelers may experience a
penalty for a late arrival or may make travel choices to avoid being late
(as described above) and therefore incur greater early arrival penalties.

Now, returning to the example, if a traveler’s NAT is after Δ*,
then the traveler will choose the SAT nearest his or her NAT. The
bus’s AAT, however, is stochastic, which means that the traveler
may arrive very early (relative to the NAT) or may arrive after the
NAT. If a traveler’s NAT is before Δ*, then the traveler chooses an
earlier bus to minimize the potential for being late. In so doing, the
traveler increases the cost associated with leaving earlier and arriv-
ing well before the NAT. This range of possibilities carries with it
an inconvenience and, as such, an additional, quantifiable general-
ized cost. An attempt is made to model these costs by following the
example of Bates et al. (7 ).

Bates et al. suggest that the following costs are associated with
early and late arrivals (7 ). For early arrivals, the cost decreases as
the AAT moves toward the NAT. If the AAT equals the NAT, then
zero cost is experienced. If the AAT is later than the NAT by any
amount, then the traveler experiences a fixed cost, representative 
of the failure to be on time. The late penalty also increases with
increasingly late AATs. These cost functions are shown in Figure 4.

In the case in which NAT is after Δ*, three separate responses to
early and late arrivals that are representative of the example traveler’s

GC AT WT IVT VOT fareT = + +( ) +α α α0 1 2 3( )

characteristics are defined. For the RA traveler, it is assumed that the
cost structure of the model of Bates et al. has very low penalties for
early arrival (because such risk aversion likely produces frequent early
arrivals) (7). For the moderately RA traveler, a slightly higher penalty
function for early arrivals but a slightly lower penalty function for late
arrivals is assumed. Finally, for the RN traveler, early and late arrival
penalties are assumed to be equal. These multiclass cost functions are
shown graphically in Figure 5 and quantitatively below:

Early Arrival Late Arrival 
Traveler Type Penalty (min) Penalty (min)

RA 0.25 * (NAT − AAT) 0.5h + (AAT − NAT)
Moderately 0.5 * (NAT − AAT) 0.25h + 0.5(AAT − NAT)

RA
RN 0.6 * (NAT − AAT) 0.6(AAT − NAT)

For the case in which NAT is before Δ*, the penalty for early
departure is quantified as one headway.

There are now four cases, as follows:

1. NAT is after Δ* and the bus’s AAT is before NAT; a penalty
for early arrival is incurred.

2. NAT is after Δ* but the bus’s AAT is after NAT; a penalty for
late arrival is incurred.

3. NAT is before Δ* and the bus’s AAT is before NAT; penal-
ties for early departure and early arrival are incurred.

4. NAT is before Δ* and the bus’s AAT is after NAT; penalties
for early departure and late arrival are incurred.

The generalized cost equation can be rewritten for each case. For
simplicity, it is assumed that AT is negligible (equal to zero) and that
WT is equal to one-half of the headway (0.5 h), or 7.5 min. Furth
and Muller treat the impacts of reliability on WT (4). It is also
assumed that VOT and fare are equal in all cases and can therefore
be eliminated. This results in the following four generalized cost
equations.

Case 1:

Case 2:

Case 3:

GC EDP WT SIVT late EAPT = + + + +( )2 5 1 25. .i i

GC WT SIVT late LAPT = + + +( )2 5 2 0. .i i

GC WT SIVT late EAPT = + + +( )2 5 1 25. .i i
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Case 4:

where

SIVT = scheduled in-vehicle travel time (min),
late = AAT − SAT (min),

EAP = early arrival penalty,
LAP = late arrival penalty, and
EDP = early departure penalty.

These generalized cost functions disaggregate the travel time
components with weighting for each one on the basis of various
sources. It is standard practice to assign in-vehicle travel time a
value of 1.0 and rank all other time components as more or less
important. In this case, however, the in-vehicle travel time was fur-
ther disaggregated into two components: SIVT and the duration of
the trip that is longer than expected, after the general form proposed
by Noland and Small (8). The SIVT component is given the stan-
dard weight of 1.0, whereas the longer than expected portion of the
trip is given a higher weight that varies depending on whether the
bus’s AAT is later than the NAT. The weighting of “late” is lower
in Cases 1 and 3 to represent a passenger’s tolerance of behind-
schedule operation that still results in an early arrival. The weight-
ing of “late” is much higher in Cases 2 and 4 because the extra travel
time causes the passenger to arrive after the NAT. The waiting time
weighting of 2.5 is derived from the average perception of WT of
Kittelson and Associates et al. (5), and the penalties for late and
early arrivals are derived from the previous equations.

Modeling NAT and AAT

To account for both the discrete arrivals and the reliability factors,
it is necessary to predict the difference of AAT and NAT. An ana-
lytic solution to this problem requires the convolution of the log-
normal PDF of arrival times and the uniform PDF of NAT (9).
Mathematically, this is quite complex. Instead, the authors elected

GC EDP WT SIVT late LAPT = + + + +( )2 5 2 0. .i i

to simulate the results with appropriately distributed arrival and
NAT events.

RESULTS

In this study, 10,000 travelers who were equally likely to have each
risk-aversion characteristic and who were equally likely to have a
destination of each reliability category were created. A scheduled
in-vehicle time of 20 min was assumed. This results in a traditional
generalized cost of 38.75 min. The AVL-derived arrival distribu-
tions presented above for the stations were used. The model predicts
frequencies of 78.4%, 4.5%, 17.1%, and 0.1% for Cases 1 through
4, defined above, respectively. That is, 78.4% of the time a passen-
ger will choose the bus that is scheduled to arrive nearest the pas-
senger’s NAT and actually arrive before the NAT. Only 4.5% of the
time will a passenger choose the bus that is scheduled to arrive near-
est the NAT and arrive late. Just over 17% of travelers will choose
an earlier bus to avoid the possibility of being late, with nearly all of
them arriving on time. The model predicts a probability of 0.1% that
a passenger will elect to take an earlier bus and still arrive late.

To investigate the impacts of discrete arrival times and unreli-
ability on generalized costs, the model’s generalized cost results
are shown in Figure 6. The dashed line represents the traditional
generalized cost.

The range of costs ranges from 43.9 min for RA travelers travel-
ing to a high-reliability stop to 50.8 min for moderately risk averse
travelers traveling to a low-reliability stop. For each class of trav-
eler the generalized cost increases with decreased reliability. The
least-reliable stop has generalized costs that exceed those for 
the most-reliable stop by about 7 min, or more than 15%. The mod-
erately risk averse traveler also has the highest costs in each case.
This traveler has a slightly higher threshold for choosing the first
arriving bus, which results in the traveler experiencing late penal-
ties more frequently than the RA traveler. So, although the most-RA
traveler is more likely to experience a penalty for an early departure,
that traveler is much less likely to experience a penalty for a late
arrival.

30

35

40

45

50

55

High-reliability stop Moderate-reliability stop Low-reliability stop
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FIGURE 6 Generalized cost (minutes) results from the model.



The model also provides intuitive results for the RN traveler.
As reliability decreases for the destination stop, the RN traveler
is least affected of all travelers. This is indicative of the overall
risk tolerance of that type of traveler and the equal (and generally
smaller) perception of the penalty associated with either result.

Two conclusions may be made from the information in Figure 6.
First, modelers who are predicting mode split on the basis of tra-
ditional generalized costs are likely to be underestimating the
generalized cost of transit. In the example presented here, the under-
estimation is approximately 20% to 30%. This systematic under-
estimation may partially help to explain the need for the so-called
transit bias coefficient that is often used to calibrate predicted mode
splits to observed values. Second, this formulation can be used 
to quantify the actual costs of unreliable transit service. In this
example, the average costs are 44.3, 48.0, and 49.9 min for high-,
moderate-, and low-reliability stops, respectively. If all stops were
upgraded to high reliability, the model suggests that savings of
3.1 min (approximately 7%) per passenger are possible. Multiply-
ing this time savings per capita times ridership and the value of time
provides a financial estimate of the benefits accrued. This value can
be directly compared with potential infrastructure investments, such
as investments in queue jumpers and transit signal priority.

CONCLUSIONS AND FUTURE WORK

This model described here is based on data from the region of Water-
loo, Ontario, Canada. It demonstrates a clear methodology that can
be used to assess the impacts on reliability in a reasonably reliable
network. The study has shown that increasing the reliability of
arrivals at a station can decrease the generalized costs of transit
users. The authors further posit that the inclusion of uncertainty in
the calculation of generalized costs may provide better estimates of
mode splits in travel forecasting models.

Given that this model has been created, it is a relatively straight-
forward exercise to test different transit systems for which AVL data
exist. This allows comparison of the impacts of overall reliability on
users from across networks. The model formulation also allows
assessment of the impacts of longer headways on penalties for early
arrivals. Perhaps most importantly, the formulation presented here
provides an opportunity to calibrate a model of user perceptions for
disaggregate travel times. A generalized cost model that includes

separate weightings for deviations from expected travel times, as
well as early and late arrivals, may be able to be calibrated.
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